
A Multi-Agent Systems Engineering Tool
based on Ontologies

Artur Freitas, Lucas Hilgert, Sabrina Marczak
Felipe Meneguzzi, Rafael H. Bordini and Renata Vieira

Graduate Program in Computer Science - Faculty of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS) - Porto Alegre, Brazil

{artur.freitas,lucas.hilgert}@acad.pucrs.br,
{sabrina.marczak,felipe.meneguzzi,rafael.bordini,renata.vieira}@pucrs.br

Abstract. This paper describes a tool that supports the development of agent-
oriented software on the basis of an ontology. The tool implements techniques for
transforming instantiations from conceptual models into MAS implementations.

Keywords: Model-driven engineering, ontology, multi-agent system

1 Introduction

Model-Driven Engineering (MDE) employs conceptual models as the cornerstone of
software development processes [3] in order to improve productivity, portability, inter-
operability, maintenance, and so on. MDE provides abstractions and notations to im-
prove understanding and to support the modelling of applications for specific domains.
These advantages can also be employed in the development of Multi-Agent Systems
(MAS) given their complexity and the need for integrating several components that
are often addressed from different angles. For example, the JaCaMo [1] framework
for MAS programming combines three separate technologies: Jason for coding agents
in AgentSpeak, CArtAgO for programming the environment as artifacts in Java, and
Moise for specifying MAS organisations in XML. These three distinct starting points
to code the MAS should work as a single conceptual model, thus combining these sep-
arate MAS dimensions is desirable. The use of models is present in most agent method-
ologies [3], and MDE techniques for agent-oriented software engineering emerges nat-
urally. Prometheus [5] is one example of MDE for MAS; however, differently from
our work, formal ontologies are not explored as part of such models. Since MDE and
ontologies share a number of principles and goals, and since there is much work com-
bining ontologies and MAS, these synergies led us to investigate their uses in tools for
MAS modelling and development, considering features such as code generation, sup-
port during programming, and reasoning about the system. Although the advantages
of ontologies for agents are clear, few MAS platforms currently incorporate ontology
techniques throughout the entire systems development life cycle. We are not aware of
any previous exploitation of ontologies in the global modelling of MAS where such
model is used also in a tool during the programming phase. It is our claim that tools



for designing complex systems should consider models that are clear to communicate,
allow reuse and reasoning over the specification, and provide support during program-
ming. Thus we propose a model and tool that: (i) covers MAS design and development
as a whole in an integrated formalism; and (ii) enables techniques for transforming in-
stantiations from such conceptual model represented as an ontology into effective MAS
implementations. This paper presents our proposal of using MAS conceptual modelling
and an Eclipse plug-in that provides features such as drag-and-drop and auto-complete
from ontologies for coding MAS using agent-oriented programming languages.

2 Ontology-based Modelling of Multi-Agent Systems

We designed an ontology for MAS modelling that represents the main dimensions usu-
ally considered in MAS development frameworks: agents, environments, and organi-
sations. Our MAS ontology employs a single and integrated formalism for these di-
mensions, which allows us to model, reuse, and transform it into effective MAS im-
plementations. The methodology for modelling MAS consists of creating instances of
the concepts and properties from such ontology, which can be done with any ontology
editor. Our ontology was defined from analysing and combining the meta-models of
Prometheus [5] and JaCaMo [1], which was also done by other, e.g. [6], but without us-
ing an ontology and without presenting model-based development tools. Our approach
allows designers to gradually move from high-level abstract views to elements directly
available in concrete technical MAS programming platforms. The MAS initial model is
presented in Fig. 1. In the development of a MAS, the main concepts of our ontology are
instantiated by the designers. They specify the agents in their particular system, what
is observable in the environment, and the characteristics and roles of the agents in the
organisation. For example, suppose the design of a MAS to simulate a soccer match. In-
stances of Agent will be player and coach. Actions such as move, pass ball, and change
strategy could be modelled, and Actions can be related to Agents through the has-action
property. The ball could be modelled as an Artifact, containing an Observable Prop-
erty such as position, associated to it through the has-property relationship. The team
can be organised in Groups that include Roles (e.g., defender and midfielder) by means
of contains-role. These examples show how to specify MAS elements with our ontol-
ogy. Our proposal has been tested with a group of five students; the results show that it
improves how MAS are expressed, communicated, and converted into effective MAS
implementations. It allows designing without going into specifics of programming lan-
guages, and it groups together what is developed using separate technologies.

3 Ontology-based Multi-Agent System Development Tool

As mentioned above, the design process consists of instantiating a top-ontology with
details of a particular MAS. Our tool is an Eclipse plug-in that uses the instantiated
model to support MAS programming. Our plug-in (to be used in the “Jason Perspec-
tive”, provided by the Jason or JaCaMo plug-ins) loads OWL ontologies and provides
two model-based programming features to develop Jason [2] agent code: drag-and-drop
and auto-complete from ontologies. The plug-in was developed using the OWL API [4]



Fig. 1. Main concepts and properties of the MAS ontology model.

for manipulating the ontology. The drag-and-drop from the ontology to the agent code
is illustrated in Fig. 2, which depicts the Jason perspective in Eclipse. On the right-hand
side of the image, the developer can navigate the MAS model encoded as ontology con-
cepts, instances, and properties. These elements can be dragged to the left-hand side
that contains the AgentSpeak code of Jason agents (in this case, file player.asl). As ex-
emplified in Fig. 2, the programmer is selecting an instance, named pass_ball, from
the Agent Action concept, to be inserted into a plan body. Similarly, our tool provides
auto-complete from ontology to agent code, which is activated when the developer is
typing Jason code (or pressing the shortcut “ctrl+space”). Then, the available options
based on the ontology are presented to the programmer as suggestions. One example is
when coding a plan context, which may be composed of ontology-based queries (e.g.,
checking if an individual belongs to a concept). The generation of agent code from on-
tologies takes into consideration the context where an element is dragged into the code.
For example, when dropping an instance of “Role” inside a plan’s body, the action to
adopt that role can be automatically created; when a “Message” is dropped, an action
to send the corresponding message can be generated. Moreover, as the MAS is being

Fig. 2. Drag-and-drop in Eclipse from ontology model to MAS implementations.



coded, updated information about the MAS has to be reflected in the model. One of the
next steps in our tool development is the use of semantic reasoning for purposes such
as consistency checking or inferring new knowledge about the MAS specified in the
ontology. The evaluation of our tool with participants of an experiment pointed out that
it is intuitive to use, easy to understand, easy to visualise, useful in programming, and
improves model-program approximation. It helps with code consistency (as it encour-
ages developers to consistently use terms from the ontology) and provides an overview
of the MAS in the programming context, combined with features such as dragging con-
tent from a model into MAS code. Further MAS code could be generated automatically
from this model, and the ontology can be more restrictive during MAS coding (i.e., in-
dicating errors or mismatches between model and code). Also, the Eclipse plug-in could
allow users to edit the MAS model (e.g., to include new instances) without having to
use an ontology editing tool.

4 Final Remarks

Ontologies offer significant advantages for MAS model-based development, such as
interoperability, reusability, support for MAS development activities (such as system
analysis and agent knowledge modelling) and support for MAS operations (such as
agent communication and reasoning). In terms of MAS design, our model provides a
global conceptual view, often missing in agent platforms, which is extended by MAS
engineers in the initial phases of their development processes. As a result, developers
obtain new features for developing complex software systems with an infrastructure
that combines and applies modelling, software, and knowledge engineering principles.
For example, reasoners can validate meta-models automatically or generate MAS code
from models, all of which contribute to more principled ways to develop MAS. As
future work, we plan to assess some of these features and advantages derived from our
proposal. Further details about our model, tool, and their evaluation can be found at
https://demoproposal.wordpress.com/.

References
1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented program-

ming with JaCaMo. Science of Computer Programming 78(6), 747–761 (2013)
2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-

peak using Jason. John Wiley & Sons (2007)
3. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering techniques

for the development of multi-agent systems. Engineering Applications of Artificial Intelli-
gence 25(1), 159–173 (2012)

4. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semantic Web
2(1), 11–21 (2011)

5. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent agents. In:
Giunchiglia, F., Odell, J., Weiß, G. (eds.) Agent-Oriented Software Engineering III. LNCS,
vol. 2585, pp. 174–185. Springer (2003)

6. Uez, D., Hübner, J.: Environments and organizations in multi-agent systems: From modelling
to code. In: Dalpiaz, F., Dix, J., van Riemsdijk, M. (eds.) Engineering Multi-Agent Systems.
LNCS, vol. 8758, pp. 181–203. Springer (2014)


	A Multi-Agent Systems Engineering Toolbased on Ontologies

