
Some issues on Conceptual Modeling 
and NoSQL/Big Data 

Tok Wang Ling  
National University of Singapore 

1 



Database Models 
• File system - field, record, fixed length record 
• Hierarchical Model (IMS) - fixed length record, tree structure 

• Network Model (IDMS) - field, fixed length record; owner, 
member, set (circular linked list) 

• Relational Model - fixed length, normal forms based on FD & MVD 
– Nested Relation  

• Entity-Relationship Approach  - for conceptual database design 
• Object-Oriented (OO) Data Model – object, object ID, class 

hierarchy, inheritance, method, …  
• Object Relational Data Model 
• Deductive and Object-Oriented (DOOD) – deductive OO rules 

• Semi-structured Data Model (XML data) – hierarchical structure 
 
 
 
 
 
 

2 



Some problems in Relational Model 
• Use FDs and MVDs, but no concept on relationship  

 FDs and MVDs are not relationships, they are integrity constraints  
• Normal forms are to remove redundancies and to reduce 

updating anomalies. 
• Does redundancy definitely incur updating anomalies?  

Not always!  
– E.g.      supply (S#, Sname, P#, Pname, price)    

has redundant information on Sname and Pname, but it does not suffer from updating 
anomalies as we don’t change Sname and Pname of suppliers and parts, resp.   

– Concepts: Strong FD, Strong MVD, Strong relationship. 
– E.g.   In an invoice of a purchase order, we add the product name, price of product, 

and total amount of the invoice. These are redundant, but they don’t incur updating 
anomalies we don’t change the invoice. Better! 

 

 Adding redundancy for physical database design may not incur 
updating anomalies and instead may improve performance 
significantly.  

 Normal form relations may be bad for the performance of some 
applications.  Any theory? 

 3 



Some problems in Relational Model 
• RDBMS cannot handle multi-valued attributes and composite 

attributes efficiently. 
     

E.g.  Nested relation:  
 

 employee (e#, name, sex, dob, hobby*,  
          qual (degree, university, year )* ) 
 

To store employee information, we need 3 normal form 
relations. To get information of an employee, we need to join 
the 3 relations, very inefficient and slow. 
 

Normal form relations are not efficient for storing 
and processing multi-valued attributes;  nested 
relation/OO storage is better. 

4 



• RDBMS join operation is very expensive. 
• SQL is not useful for many applications 
• SQL is a declarative language which operates on a 

set of tuples at a time basis. 
MapReduce is an imperative language which operates a 
record at a time basis. Good for some applications. 

• ACID (Atomicity, Consistency, Isolation, Durability) 
is to sure consistency of data.  
Overhead for enforcing ACID is very high and may not be 
necessary for many applications (such as large data 
volume applications which don’t update the data). 

5 

Some problems in Relational Model 



NoSQL 
NoSQL (not only SQL? no join?) databases are categorized 
according to the way they store the data.  
4 major categories for NoSQL databases: 
 

1) Key-value stores 
 Each data/object is stored, indexed, and accessed using a key. 

Data can be structured or semi-structured or unstructured.  
 E.g.   Tables:  Customer and Orders    

 
 
 
 
 
 
 
 
 

Notes.  Tag name: value. Can have different tag names for 
different tuples, semi-structured or unstructured. 

 

6 



NoSQL 
2) Wide-Column stores (Column-oriented stores) 
 Contain extendable columns of closely related data,  
 E.g. Bigtable  

– Bigtable is a spare, distributed, persistent multi-dimensional sorted map. 
– The map is indexed by a row key, column key, and a timestamp; each 

value is the map is an un-interpreted array of bytes. 

 (row-key, column-key, time) -> string 
– The row key value is a reversed url.  
– Bigtable maintains data in lexicographic order by row key. So webpages in 

the same domain are grouped together into contiguous rows. 
– Column keys are grouped into sets called column families, which form 

the basic unit of access control. 
– A column key is named using the syntax:   family:qualifier 

3) Document  Stores 
 Similar to XML data:  semi-structured data 

 

 

7 



NoSQL 
4)   Graph Database 
 Nodes and edges (objects and relationships). Nodes and/or edges 

are typed an/or labelled? Directed or undirected edges? Edges are 
weighted? 
 Binary relationships between pairs of nodes.  Where to store the 

binary relationships’ attributes? On the edges? 
 Problems in handling n-ary relationship types. How? 
 If we store a data graph using a relation                                      
 edge (from-node, to-node)        

to traverse from one node to another node (e.g. shortest path 
problem) will be very slow,  needs many joins.  

    So, RDBMS is bad for storing and processing graph data. 
 Graph data can be stored as in-memory database using 

pointers/node IDs  for efficient node traversal. 
 Write programs to solve specific problems 
 Problems. How to express user ad hoc queries? How to present 

query answers for users to understand?  E.g. Steiner tree. 
 

 

8 



SQL vs NoSQL 
  

• has a fixed schema, many related relations and fixed length  
 vs does not require a schema or uses a semi-structure  
                  model  
• declarative standard query language  

 vs different imperative programming languages 
• write queries using SQL  

vs write programs (e.g. MapReduce programs with  
     API’s,  etc.) for queries 

• Query optimizer of RDBMS 
vs optimization done by programmers 

• return accurate/precise query answer  
vs return “an opinion” or “best guess” – similar to data   
     mining and IR. 

9 



SQL vs NoSQL 
 • allow updates (rewrite)  

vs just have new data, no or seldom updates (delete or change). 
• Enforce ACID  for consistency 

vs emphasis on speed performance, use eventual consistent 
• Use join operator  

vs avoid or no join operator (e.g. use redundant data) to speed up processing 
• For many different various database applications                 

 - mission critical transaction systems 
vs each design for some specific applications  
 - search engines, web-based systems, real-time, cloud 

• DBMS   
 vs data stores? 
 
 

Question: When do we use SQL or NoSQL?  
    Depend on applications.  
 

Criteria: Fixed schema? Transactions? ACID required? Precise answers?   
              Ad hoc user queries? Frequent updates? horizontal and/or vertical partition?  
              Very large volume data?  Complex algorithms needed to solve the problems  
              and queries (e.g. data mining techniques)?  

10 



Use of existing database techniques for  
NoSQL conceptual modeling and Questions 

• Materialized view and introduce redundant data for faster processing.  
Theory behind. 

• Horizontal and vertical partitioning of data for different applications in 
physical database designing. Can the data be horizontally and/or 
vertically partitioned? What overhead will incur? Theory behind.  
If data can be partitioned horizontally and processed in parallel, and 
merge the results of the partitions, then Hadoop with MapReduce is a 
good solution. 

o E.g. To sort a big volume of string data, we can partition the string data on the 
first character, the sort individual partition using a O(n log n) method.                
If the complexity of the sort method is   f(n) =  c*n*log n  where n is the 
data size and c is a constant, each partition needs    c*n/k*log (n/k) < 
f(n)/k , so much faster completion time, where k is the number of parallel nodes. 
However, the total computation operations is about the same. 

o For O(n2) problems, the speed up can be up to K2 times. 

• Class hierarchy and inheritance for NoSQL data? 
• DOOD rules for NoSQL data?  
 

 
 

11 



Use of existing database techniques for  
NoSQL conceptual modeling and Questions 

• Data and Schema integration.  Entity resolution 
(object identification) is not enough we need to 
consider relationship resolution (relationship 
identification). Theory behind. 
We need to handle local/global FD/key, key vs OID 

of object class. 
Need to consider n-ary relationship types and their 

attributes. 
Temporal aspect is important for data integration 

like in data warehouse. 
• Q: How to use ORA-semantics for NoSQL data in order 

to improve the quality/accuracy of the answers, such 
as in Data/schema integration, keyword query search? 
 
 

 

12 



Thank you! 

13 


	Some issues on Conceptual Modeling and NoSQL/Big Data
	Database Models
	Some problems in Relational Model
	Some problems in Relational Model
	Some problems in Relational Model
	NoSQL
	NoSQL
	NoSQL
	SQL vs NoSQL�
	SQL vs NoSQL�
	Use of existing database techniques for �NoSQL conceptual modeling and Questions
	Use of existing database techniques for �NoSQL conceptual modeling and Questions
	Thank you!

