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Abstract. Probabilistic cardinality constraints stipulate lower bounds
on the marginal probability of cardinality constraints in probabilistic
databases. The demo shows how the computation of Armstrong PC-
sketches helps design teams identify lower bounds that separate mean-
ingful from meaningless probabilistic databases in an application domain.
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1 Introduction

Background. Cardinality constraints are fundamental for understanding the
structure and semantics of data. They were introduced in Chen’s seminal pa-
per [2] and have attracted interest and tool support ever since. A cardinality
constraint card(X) ≤ b is satisfied by a relation r iff r does not contain more
than b different tuples that all have matching values on all the attributes in X.
Consider a wireless sensor network in which we record the RFID tag number
of wolverines along with the time and zone of their sighting within a year. We
may specify the cardinality constraint card(RFID,Zone) ≤ 365 which says that
the same wolverine is sighted in the same zone up to 365 times a year. Today,
uncertain data is at the core of an increasing number of modern applications.
To help manage the requirements of such applications, probabilistic databases
emerged. A probabilistic relation r = ({W1, . . . ,Wn}, P ) is a probability dis-
tribution P over a finite set {W1, . . . ,Wn} of relations, each representing a
possible world [8]. Recently, probabilistic cardinality constraints (pCCs) were
proposed [5,6] as extensions of both probabilistic keys [1] and traditional car-
dinality constraints. A pCC (card(X) ≤ b,≥ p) is satisfied by a probabilistic
relation r = ({W1, . . . ,Wn}, P ) iff the marginal probability of card(X) ≤ b in r
is at least p, that is, the sum of the probabilities P (Wi) of the worlds Wi that
satisfy card(X) ≤ b is at least p. In our example, we specify the following set
Σ of pCCs: (card(RFID,Zone) ≤ 365,≥ 1), (card(RFID,Time) ≤ 1,≥ 1) and
(card(Time,Zone) ≤ 2,≥ 0.5). The contributions of [5,6] were the proposal of
pCCs, the demonstration of their usefulness in data quality and query estima-
tion, axiomatic and algorithmic characterizations of their implication problem,
and an algorithm for computing for any given finite set Σ of pCCs, a single
Armstrong PC-sketch for Σ.

[tkr|s.link]@auckland.ac.nz


2 Tania Roblot, Sebastian Link

Fig. 1. Armstrong sample
A PC-sketch is Armstrong for Σ iff for every pCC
ϕ, Σ implies ϕ iff the Armstrong PC-sketch sat-
isfies ϕ. In particular, for every cardinality con-
straint card(X) ≤ b the largest probability p such
that Σ implies (card(X) ≤ b,≥ p) coincides with
the marginal probability of card(X) ≤ b in an
Armstrong PC-sketch for Σ. This property is ap-
pealing during requirements acquisition where de-
sign teams must identify constraints that separate
meaningful from meaningless databases in the ap-
plication domain. For the set Σ of pCCs in our
running example, Figure 1 shows a probabilistic
Armstrong sketch where P (W1) = P (W2) = 0.5.
Every tuple of a sketch has actual domain values
on a given attribute set, the symbol ∗ on all remaining attributes, and a cardinal-
ity that says how many different tuples with the domain values on the attribute
set it represents. For instance, (365,v RFID,4,∗,v Zone,4) represents 365 tuples
that all have the value v RFID,4 on attribute RFID, the value v Zone,4 on at-
tribute Zone, and unique values on attribute Time. Sketches finitely represent
infinite worlds which result from attributes for which no finite bound has been
specified with probability 1. For example, (INFTY,∗,∗,v Zone,1) indicates that
no finite bound has been specified on Zone.
Contribution. The demonstration showcases our tool Fortuna which computes
Armstrong PC-sketches for finite sets of pCCs [5,6]. The main contribution is
Fortuna’s ability to transfer the concepts of pCCs and their Armstrong PC-
sketches into the practice of requirements engineering. The demonstration illus-
trates how Fortuna facilitates communication between design teams and domain
experts, showing how users identify more meaningful probabilistic cardinality
constraints.
Organization. We discuss novelty in Section 2. The GUI is presented in Sec-
tion 3. The demonstration is outlined in Section 4. We conclude in Section 5.

2 Related Systems and Novelty

Inspired by the design-by-example paradigm of Armstrong databases [3,4,7], our
tool allows the user to specify a set Σ of pCCs for which an Armstrong PC-sketch
will be computed by Fortuna. Fortuna functions as an oracle to translate sets of
pCCs, currently perceived as meaningful by the designers, into a concise repre-
sentation of a probabilistic relation which can be inspected jointly with domain
experts to point out flaws and shortcomings. While there is a plethora of research
about Armstrong databases for constraints on certain data, see [3,5,6] for refer-
ences, Fortuna is the first tool to compute Armstrong databases for constraints
on uncertain data. Tool support seems even more important for probabilistic
constraints, since not only the right bounds but also the right marginal proba-
bilities must be identified.
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Fig. 2. Fortuna’s results

3 Application

Fortuna is a GUI developed in Java 1.7, and is available for download from
cs.auckland.ac.nz/~tkr/fortuna.html. Users can specify the set Σ from the
GUI’s form or a file. Fortuna computes an Armstrong PC-sketch for Σ as per
[6]. Figure 2 shows the output on our running example. The two possible worlds
from Figure 1 are represented as a single Armstrong PC-sketch. Users can check
for any pCC if it is implied by Σ. For example, (card(Time) ≤ 3,≥ 0.35) is
violated as card(Time) ≤ 3 has marginal probability 0 in the PC-sketch.

4 Demonstration

Fig. 3. Agile method
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The demonstration showcases how Fortuna aids with the
visualization of missing but semantically meaningful con-
straints thanks to a simple use case scenario: our run-
ning example. The audience is given the role of the design
team while the demonstrators act as domain experts. The
process is agile, facilitating interaction and iteration as
shown in Figure 3: the designers specify pCCs they con-
sider meaningful for the given scenario; next they feed
those into Fortuna to construct an Armstrong PC-sketch
that visualizes the designer’s perception for the domain
experts; the domain experts then inspect the sketch and
provide feedback to the designers who refine their con-
straints accordingly. After inspecting the Armstrong PC-
sketch of Figure 2, the domain experts may be concerned about the occurrences
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of INFTY in the sketch. Discussion may result in the specification of additional
cardinality constraints, such as for the number of times each wolverine can be
sighted. This process is iterated until the domain experts validate the percep-
tions of the designers. Thus the audience gets to simulate the real use of Fortuna
to experience how well it facilitates the communication between designers and
domain experts, by pinpointing flaws and shortcomings and allowing on-the-fly
testing and corrections.

5 Conclusions

As the Einstein-accredited quote states: “Example is not another way to teach, it
is the only way to teach.” The design-by-example paradigm is a natural approach
which inspired the creation of Fortuna: a GUI that constructs an Armstrong
PC-sketch that perfectly visualizes the marginal probabilities of any set of pCCs.
Fortuna can easily be used to overcome any mismatch in expertise by facilitating
the communication of pCCs to stakeholders of the target probabilistic database.
Any party involved with probabilistic databases should welcome the integration
of cardinality constraints. Our work is a first and major step towards making
this new notion accessible to database practice. Future work should look into
introducing other integrity constraints to Fortuna.
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